Which expression is equivalent to $\frac{42 a}{k}+42 a k$, where $k>0$? A) $\frac{84 a}{k}$ B) $\frac{84 a^{2}}{k}$ C) $\frac{42 a(k+1)}{k}$ D) $\frac{42 a\left(k^{2}+1\right)}{k}$	$\begin{aligned} & \mathrm{D} \\ & (42 a)\left(\frac{1}{k}+k\right) \\ & =(42 a)\left(\frac{1+k^{2}}{k}\right) \end{aligned}$
Which quadratic equation has no real solutions? A) $x^{2}+14 x-49=0$ B) $x^{2}-14 x+49=0$ C) $5 x^{2}-14 x-49=0$ D) $5 x^{2}-14 x+49=0$	D $a x^{2}+b x+c=0$ has non-real solutions when $\delta=b^{2}-4 a c<0$ (δ means discriminant.)
$P(t)=260(1.04)^{\left(\frac{6}{4}\right) t}$ The function P models the population, in thousands, of a certain city t years after 2003. According to the model, the population is predicted to increase by 4% every n months. What is the value of n ? A) 8 B) 12 C) 18 D) 72	$\begin{aligned} & \text { A } \\ & \frac{6}{4} t=1 \\ & t=\frac{2}{3} y r=8 \mathrm{mon} \end{aligned}$
A circle in the $x y$-plane has its center at $(-1,1)$. Line t is tangent to this circle at the point $(5,-4)$. Which of the following points also lies on line t ? A) $\left(0, \frac{6}{5}\right)$ B) $(4,7)$ C) $(10,2)$ D) $(11,1)$	C $\mathrm{OP} \perp \mathrm{PQ}$ $\begin{aligned} \mathrm{OP} & =(6,-5) \\ \mathrm{Q} & =\mathrm{P}+(5 s, 6 s) \\ & =(5+5 s,-4+6 s) \end{aligned}$

