

- 1. down: $5^3 = 125$ across: $2^8 = 256$ 3 + 8 = 11
- 2. $2013 \div 3 = 671$ 671 = 335 + 336 671 = 334 + 337671 = 333 + <u>338</u>
- 3. $100 = 4 \times 25$ 25 = 1 + 24 = 1 + 8 + 16 $100 = 4 \times 25 = 2^{2}(1 + 2^{3} + 2^{4}) = 2^{2} + 2^{5} + 2^{6}$ 3 of them: 2^{6} , 2^{5} , and 2^{2} . Ans = 3
- 4. $1 + 3 + 5 + 7 + 9 = 5^2 = 25$ $\frac{15}{25} = \frac{60}{100} = 60\%$

- 5. $M:\frac{2}{5}\times60 = 24$ $W:\frac{2}{3}\times60 = 40$ $F:\frac{2}{4}\times60 = 30$ 24 + 40 + 30 = 94 min $\frac{6}{4}\times60 = 90$ min 94 - 90 = 4 min less
- 6. Let them be x, x + 2, x + 4, x + 6, and x + 8.
 2x + 2 = x + 8
 x = 6
 So, they are 6, 8, 10, 12, 14.
 6+8+10+12+14 = 50 cm
- 7. LCM(15, 4, 6, 12) = 60
 60 = 1×60 = 2×30 = 3×20 = 4×15 = 5×12 =6×10
 60 has 12 factors.
 Ans = 60
- 8. The area becomes $\frac{1}{4}$ after two foldings. $9 \times 4 = 36$ $36 = 6^2$ $4 \times 6 = 24$
- 9. 3(36 + 44) + 10 = 250
- 10. Draw an auxiliary line: d = x + ya = e + f

x = c + e (exterior angle theorem) y = b + f (exterior angle theorem) d = x + y = b + c + e + f = 55 + 40 + 35= 130

- 11. 180 20= 160
 ¹/₂(160) = 80 (two base angles)
 ¹/₂(80) = 40 (angle bisected)
 ∠*CRT* = 20 + 40 = 60 (exterior angle theorem)
- 12. There are 2 pairs on each face. 6×2 = 12 There are 2 pairs in space along each axes in 3-D. Just name one dimension along *z*-axis (perpendicular to the floor) (AD, FG) and (EH, BC). 3×2 = 6 12 + 6 = 18 pairs in total
- 13. $4 \times 70 = 280$ $3 \times 80 = 240$ 280 - 240 = 40
- 14. 4 terms

$$8 = 1 + 3 + 3 + 1$$

- 15. C $706 \div 7 = 100\text{R6}$ Saturday -1 = Friday
- 16. 10:20:30 = 1:2:3The weighted average $= \frac{1 \times 70\% + 2 \times 80\% + 90 \times 3}{1 + 2 + 3} = 83\%$
- 17. Let *x* be the number glasses. $\frac{1}{8}x = 3$ x = 24 24 = 8 + 16Let *y* be the number of guests. $\frac{1}{2}y = 8$ y = 16
- 18. $\frac{1}{2}(50+10) = 30$ $30^2 - 50 \times 10 = 400$

26.

19.
$$3 \times 4 + 4 = 16$$

 $\frac{16}{36} = \frac{4}{9} = 4/9$
20. Method I)
 $A = B = C = D = 9$
 $6 \times 2 + 4 \times 9 + 3 \times 3 = 12 + 36 + 9 = 57$ cm

Method II) The total area after folding $= 2 \times 6 \times 3 + 4 \times 18 + 3 \times 9$ = 36 + 72 + 27= 135The area lost due to folding $= 4 \times 9 = 36$ Area of the original strip $= 135 + 36 = 171 = 3 \times 57$ The original length = 57 cm

22.
$$10 \times 10 = 100$$

 $A:\frac{1}{2} \times 3 \times (5 + 6) = 16.5$
 $B:\frac{1}{2} \times 6 \times 7 = 21$
 $C:\frac{1}{2} \times 6 \times 10 = 30$
 $D:\frac{1}{2} \times 4 \times 5 = 10$
 $100 - (A + B + C + D) = 22.5$

- 23. Let x be the side length of the smaller equilateral triangles. 3(6-2x) + 3x = 18 - 3x = 9x 12x = 18x = 1.5 cm
- 24. 2 different values 1+2+3+4+7 = 1+2+3+5+6 = 17 1×2×3×4×7 = 168 1×2×3×5×6 = 180
- 25. 5 of them: 9, <u>10</u>, 11
 - 23, <u>24</u>, 25 47, <u>48</u>, 49

79, <u>80</u>, 81 81, <u>82</u>, 83

$$5 \times 7 = 35$$

35 - $\frac{1}{2}(1 \times 7 + 4 \times 3 + 3 \times 1 + 4 \times 1) - 1$

= 35 - 14= 21 cm²

N						
						М
	\setminus				Δ	
	-1			/		
	$\frac{1}{\nu}$					_
	Λ		Ļ			

27. B

28.

Cut it horizontally and vertically by some numbers: 7 by 0:# 8 pcs 6 by 1:# 7×2 = 14 pcs

5 by 2:# 6×3 = 18 pcs 4 by 3:# 5×4 = 20 pcs

$$-4 = a + b + x + y$$

$$2 = z + a + b + x + y$$

$$2 = z - 4$$

$$z = 6$$

 $\begin{pmatrix} -4 \\ x \\ y \\ z \\ b \\ b \end{pmatrix}$

BTW: a = b + x - 2 b = a + y - 2 y = b + x + 4x = a + y + 4

x + y = 4 a + b = -8z = 6 (center)

29. $1+3 = 4 = 2^{2}$ $1+3+5 = 3^{2}$ $1+3+5+\ldots+39 = 20^{2} = 400$

- 30. $\frac{1}{2}(6 \times 7) = 21$
- 31. width:3×16 = 18 height:3×7 = 21 18+21 = 3(6+7) = 39
- 32. $\frac{1}{2}(18 \times 21) = 189$

33. $6 \times 6 = 36$ Each side is 6. The total area of shaded region $= \frac{1}{2} \times 6 \times (p + q + r + s) = 27$ p + q + r + s = 9

34. Let MN = 1. The area of the shaded region: $\frac{3}{2}$. The area of the square:8. Ans = 3:16

35. *p* = 2, *q* = 5, *r* = 4 2×5×4 = 40

36. 2 such numbers 10 and 20.

For 10, the only 3-multiples are $\{3, 6, 9\}$, so $\frac{3}{10} = 30\%$. For 20, the only 3-multiples are $\{3, 6, 9, 12, 15, 18\}$, so $\frac{6}{20} = 30\%$.

For 30, the only 3-multiples are $\{3, 6, ..., 27, 30\}$, so $\frac{10}{30} = 33\frac{1}{3}\%$.

For 40, the only 3-multiples are $\{3, 6, ..., 39\}$, so $\frac{13}{40} = 32.5\%$.

For 50, the only 3-multiples are $\{3, 6, ..., 48\}$, so $\frac{16}{50} = 32\%$.

37. 4 EUR

38.
$$\frac{3}{1} - \frac{4}{2} = 1$$

 $\frac{4}{1}-\frac{3}{2}=2.5$

39. Let *n* coins be dug up by *x* men. $\frac{n}{x-4} - \frac{n}{x} = 10$ 4n = 10x(x-4)

$$\frac{n}{x} - \frac{n-50}{x} = 5$$

50 = 5x
x = 10
n = 600÷4 = 150
40. 1 - $\frac{2}{3} = \frac{1}{3}$

$$\frac{3}{4} - \frac{1}{3} = \frac{5}{12} = 5/12$$

41. Both got green: $\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$ Both got red: $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ $\frac{1}{8} + \frac{1}{4} = \frac{3}{8} = \frac{3}{8}$

42. Method I) Data

Number	Row	Col	Index
1	1	1	1 st
3	1	3	2nd
6	1	6	3 rd
10	2	2	4 th
15	2	7	5 th
21	3	5	6 th
28	4	4	7 th
36	5	4	8 th
45	6	5	9th
55	7	7	10 th
66	9	2	11 th
78	10	6	12 th
91	12	3	13rd
105	14	1	14 th
120	16	0	15 th
136	18	0	16 th
153	20	1	17 th

Track these shaded number on the first column of the above table.

The column of each such number $x = x \mod 8$ The answer is 120.

Method II) Algebra

Find the triangular number T = 1+2+3 + ... + n, and $T \mod 8 = 0$ Namely, $8 \mid \frac{1}{2}n(n + 1)$ or 8 is a divisor of $\frac{1}{2}n(n + 1)$ Let's try n = 7, T = 28, not good. n = 8, T = 36, not good n = 15, T = 120GOOD, indeed an 8-multiple.

43.
$$\frac{30+5}{60} = \frac{7}{12} = 7/12$$

44. Assume the number reads: *ab a + b + ab = 10a + b a*(1 + *b*) = 10*a*1+*b* = 10 *b = 9*

45.
$$\frac{1}{3} = 1/3$$

Bottom	Product of the remaining 5 face values			
1	720			
2	360			
3	240			
4	180			
5	144			
6	120			

	А	В	С	Total				
	x	у	36	x+y+36				
	<i>x</i> - <i>y</i> -36	2y	72	x+y+36				
	2 <i>x</i> -2 <i>y</i> -72	3 <i>y</i> - <i>x</i> -36	144	x+y+36				
	Not	Not	252- <i>x</i> - <i>y</i>					
47	needed	needed	=36					
4/.	252 – <i>x</i> –	y = 36						
	x + y + 30	5 = 252						
48.	2+3+4=1	+3+5=1-	+2+6=9					
	$2 \times 3 \times 4 = 24$							
49.	$180 \div 3 = 0$	50						
	60 + 60 =	: 120 (not	the best)				
	180 ÷ 2 =	9 0	,					
	$0, 90, 90 \Rightarrow 0 + 90 = 90$ (but not valid)							
	1, 89, 90 =	⇒ 1 + 90	= 91					
50.	$\frac{1}{4} = 1/4$							
51.	a + b + y	$+ z = \frac{1}{2}S$						
	$a + b = \frac{1}{3}$	S						
	$y + z = \frac{1}{6}$	<i>S</i> .						
	$\Box = \frac{1}{6} = 1$	1/6						
52.	y + z + w	$+x = \frac{1}{2}S$						
	$x = \left(\frac{1}{2} - \frac{1}{6}\right)$	$-\frac{1}{4} = \frac{1}{12}$	= 1/12					
53.	2*□ = 1							
	$6 - \Box = 1$							
	$\Box = 5$							
	$5^*\Delta = 5$							
	$15 - \Delta = 1$	5						
	$\Delta = 10$							
54.	D							
	456 <u>231</u> sh	ould be c	orrected	as				
	456 <u>321</u>							

55. E

	Cor	Unan	Incorr	
90	18	0	2	20
91	18	1	1	20
92	18	2	0	20
95	19	0	1	20
97	19	2	0	21

56. 1357 + 2468 = 3825

57. E

 $3^{3/4} - 2^{1/4} = 1\frac{1}{2}$ (counter) So, it points to east now

58. 16

The following figure only shows 15 empty cells. Can you find a way to create 16 empty cells?

59. 0

0	
$\frac{\frac{1}{2^2} = \frac{1}{4}}{\frac{1+2}{3^2} = \frac{1}{3}}$	
1+2+3 6 3	
$\frac{1+2+3}{4^2} = \frac{3}{16} = \frac{3}{8}$	
$\frac{1+2+\dots+7}{2} = \frac{28}{54} =$	7
82 64	16

60. The leading digit must be non-zero, so there 9 choices.The second digit must be different from the first one, so there are 9 choices.The third one, 8 choicesThe fourth one, 7 choices.

9×9×8×7 = 4536

