- P = (-5, 0)1.
- Q=(0, -3)
- $L_1: y = -3$ 3.
- 4. L₂: x = -5
- No 5.
- 6. Yes
- 7. Yes
- 8. Yes
- 9. Yes
- 10. No
- 11. (1, 3)
- 12. (-1, 1)
- 13. (4, -1)
- 14. (46, 19)
- 15. (3/2, -1)
- 16. -14, 49
- 17. 0.4, 0.04
- 18. $(2x 9)^2$
- 19. $(3x 4)^2$
- 20. 25, $(4x + 5)^2$
- 21. 16, 8, 17
- 22. 25, -10, 15
- 23. 4, -20, -10
- 24. 25, -20, 28
- 25. 2, 16, 19
- 26. 9, 24, 13
- 27. 8, -72, 18
- 28. 2, -2, 4
- 29. 27, 36, 11
- 30. 12, -84, 9
- 31. **3**√**5**
- 32. **3**√**14**
- 33. **4√15**
- 34. 6√7
- 35. $4\sqrt{21}$
- 36. 8
- 37. 32
- 38. 2
- 39. 4
- 40. 4
- 41. 64
- 42. 1024
- 43. 5
- 44. 125

- 45. 3125
- 46. 5
- 47. 10
- 48. 15
- 49. 13
- 50. 26
- 51. 39
- 52. 65
- 53. √5
- 54. $2\sqrt{5}$
- 55. 5√5
- 56. Assume *x* student tickets were sold. So, there were 1500-x non-student tickets were sold. The total value of the tickets is

$$3x + 5(1500 - x) = 5000$$

$$7500 - 2x = 5000$$

$$x = $1250$$

- 57. $126 \div 180 = 0.7$
 - 1 0.7 = 0.3 = 30%
- 58. $80 \div (30-10) = 4 \text{ (hr)}$
- 59. $80 \div (30+10) = 2$ (hr)
- 60. $40 \div (30 10) + 40 \div (30 + 10) = 2 + 1 = 3(hr)$. $80 \div 3 = 26\frac{2}{3} \text{ (mph)}$
- 61. 8:24 = 1:3
- 62. $\frac{4}{3x^2}$
- 63. {1, 2, 3, 4, 5, 6}, therefore the total number of outcomes is 6.
- 64. {2, 4, and 6} are multiples of 2, thus, the probability of getting a even number is $\frac{3}{6} = \frac{1}{2}$
- 65. {1, 2, 3, 4, and 5} are the expected outcomes. So, $P(\text{a number} < 6) = \frac{5}{6}$
- 66. $15 \div 3 = 5$ gallons
 - $24 \div 5 = 4.8 \text{ min} = 4 \text{ min } 48 \text{ sec}$
- 67. Let *x*: the length BC
 - *x*: the length of DE
 - *x*: the height EF

Since the area of the parallelogram is twice the rectangle, we have

- $x^2 = 2(20x)$
- $x^2 = 40x$
- x = 40
- $20 \times 40 = 800 \text{ cm}^2 \text{ (area)}$
- 68. $4 \times 100 + 7 \times 20 = 540

MAP 280 (T2) Issue 2

70. Let x be the length, and hence
$$\frac{1}{3}x$$
 - 2, the width, $2(x + \frac{1}{3}x - 2) = 92$ (perimeter)

$$1\frac{1}{3}x - 2 = 46$$

$$\frac{4}{3}x = 48$$

$$x = \frac{3}{4} \times 48 = 36$$
 ft (length)

$$\frac{1}{3}x - 2 = 10$$
 ft (width)

$$36 \times 10 = 360 \text{ ft}^2 \text{ (area)}$$

72.
$$3\frac{1}{2} \times \frac{3}{3+4} = \frac{3}{2} \text{ hr (A)}$$

 $3\frac{1}{2} \times \frac{4}{3+4} = 2 \text{ hr (B)}$

73.
$$A = \frac{3}{2} \times 4 = 6 \text{ mi}$$

$$B = 2 \times 3 = 6 \text{ mi}$$

- 1. y = x + 4
- 2. y = 2x + 4
- 3. $y = -\frac{2}{3}x + 2$
- y = -2x + 6
- 5. y = -2x 2
- 6. $y = -\frac{2}{3}x 2$
- y = 4

x-intercept = 6 and y-intercept is 8.

- 9. *x*-intercept (y = 0) $12 \div 8 = 1.5$ y-intercept (x = 0) 12÷-3 = -4
- 10. Slope = $-\frac{3}{4}$, x-intercept = 4, y-intercept = 3
- 11. (-3, 1)
- 12. (24, -19)
- 13. (-3, 7/2)
- 14. (-5/2, 11/2)
- 15. (-1/3, 3)
- 16. 6, 9
- 17. -0.8, 0.16
- 18. $(2x + 9)^2$
- 19. $(4x + 1)^2$
- 20. 1, $(5x 1)^2$
- 21. 36, -72, 26
- 22. 4, -48, 3
- 23. 64, -96, 11
- 24. 64, 96, 17
- 25. 16, 80, 15
- 26. 5, 1, -0.2, 3.8
- 27. 5, 2, -1, 14
- 28. 5, 1, -4, -61
- 29. 6, 2, -1, 20
- 30. 7, 1, -2, -3
- 31. 4√5
- 32. **3**√**14**
- 33. **4**√**15**
- 34. **5**√**11**
- 35. $12\sqrt{2}$
- 36. 125
- 37. 6.25
- 38. 2
- 39. 16
- 40. 15.625

- 41. 1.25
- 42. 1.25
- 43. 0.5
- 44. 0.125
- 45. 0.03125
- 46. 6.5
- 47. 51
- 48. 112.5
- 49. 7√10
- 50. $12\sqrt{13}$
- 51. $0.5\sqrt{2}$
- 52. $3\sqrt{26}$
- 53. $4.5\sqrt{29}$
- 54. 7√34
- 55. $12\sqrt{41}$
- 56. 18
- 57. Incorrect, 25% instead $10 \div 40 = 0.25 = 25\%$
- 58. $P(\text{heads or 3}) = \frac{7}{12}$

(What is the part of the shaded cells in the

following table?)

		1	2	3	4	5	6
Ī	Н	H1	H2	Н3	H4	H5	Н6
ſ	Т	T1	T2	Т3	T4	T5	Т6

- 59. 1 hr 45 min
 - $1925 \div (500 + 600)$
 - = 1.75 (hr)
 - = 1 hr 45 min
- 60. Let the original price be x, then

$$0.8x = 60$$

$$x = 60 \div \underline{0.8} = \$75$$

61. Let x be amount invested at 12%, hence 12000 - xbe the amount invested at 14%. Then, we have

$$12\%x + 14\%(12000 - x) = 1580$$

$$.12x + 0.14(12000 - x) = 1580$$

$$.02x = 100$$

x = \$5000 (at 12%)

12000 - 5000 = \$7000 (at 14%)

- 62. $1 \div 4 = \frac{1}{4}$ (finished by Barb in an hour)
 - $1 \div 2 = \frac{1}{2}$ (finished by her mother in an hour)
 - $\frac{1}{4} + \frac{1}{2} = \frac{3}{4}$ (finished by them both)

 - $1 \div \frac{3}{4} = 1\frac{1}{3}$ hours = 1 hour 20 min
- 64. $26 \times 40 = 1040$ (miles)

 $1040 \div 20 = 52$ miles per hour

MAP 280 (T2) Winter Packet (See you back on 1/7)

$$= 21 \times 9 \times 400$$

$$= 189 \times 400$$

$$= 75600$$

67. Assume the shortest side is *x* yards. The sides are shown in the following diagram.

Since the perimeter of the triangle is 135, we have (2x+5)+(x+10)+x=135

$$4x + 15 = 135$$

$$x = 30 \text{ yd}$$

$$2x + 5 = 65 \text{ yd}$$

$$x + 10 = 40 \text{ yd}$$

68.
$$30 - 25 = 5$$

 $5 \div 25 = 0.2 = 20\%$

69.
$$\frac{4}{12} = \frac{1}{3}$$
 (She accomplishes $\frac{1}{3}$ of the whole job in 4 days.)
$$1 - \frac{1}{3} = \frac{2}{3}$$

$$\frac{2}{3} \times 24 = 16$$
 (days)

72. Let x be the ones digit and 6 + x be the tens digit. The value of number is

$$x + 6 + x = 8$$

$$2x = 2$$

$$x = 1$$

Therefore, the number is 71

73.
$$\frac{77+45}{330} = \frac{122}{330} = \frac{61}{165}$$