Geometry (Area) Type of Problems in AMC

AMC 8 – Beginner Level

5 in (A) & 2 in (B) & 4 in (C) & 3 in (D)

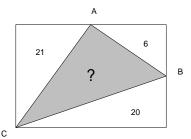
Solution

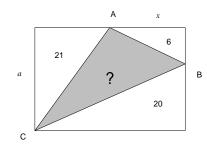
A, B, C, and D are integers representing the lengths of the rectangles shown below. Given the indicated areas of the rectangles, determine the values of A, B, C, and D.

Problem

	A in	B in
C in		
	$20 ext{ in}^2$	
D in	15 in²	14 in²

AMC 8 - Intermediate Level

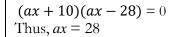

A, B, C, D, and E are integers representing lengths in inches, as shown below. The central shaded region is a square. Using the given areas of the surrounding rectangles, determine the values of A, B, C, D, and E.

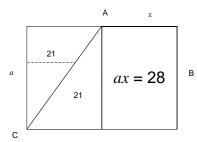

A in	B in	_
16 in²	42 in²	C in
	E	
12 in ²	25 in ²	D ir

A = 2, B = 6, C = 7, D = 5, and E = 1

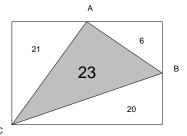
AMC 8 – Advanced Level (AMC 10)

Four triangles are enclosed in a rectangle as below. If the areas of the three corners are specified, what is the area of the central (shaded) triangle?




$$\left(a - \frac{12}{x}\right)\left(x + \frac{42}{a}\right) = 40$$

$$ax - 12 + 42 - \frac{12 \times 42}{ax} = 40$$


$$ax - 10 - \frac{2 \times 6 \times 3 \times 14}{ax} = 0$$

$$(ax)^2 - 10ax - 18 \times 28 = 0$$

The area of the whole rectangle is 28 + 42 = 70. So, the area of the shaded region = $70 - (20 + 21 + 6) = 23 \Leftarrow ans$

