Problem	Solution
AMC8 – Beginner Level In a school marathon, the number of girls is three times the number of boys. If there are 12 more girls than boys, how many runners participated in total?	girls : boys = $3 : 1$ D: $3 - 1 = 2$ (difference) T: $3 + 1 = 4$ (total) D : T = $2 : 4 = 1 : 2 = 12 : 24$ So, there are a total of 24 runners.
AMC8 – Intermediate Level A school organized a chess tournament with the rule that each table hosts one game between a boy and a girl. In the tournament, $\frac{2}{3}$ of the girls and $\frac{3}{5}$ of the boys participated. If there were a total of 60 tables used for the games, how many students are enrolled in the school?	2:3=6:9 3:5=6:10 6=6 Total = 9 + 10 = 19 #table : #players : #students = 6:19 = 60 : 190 So, there are 190 students in the school.
AMC8 – Advanced Level (AMC10) A school held a science fair where a booth accommodated only one student. Due to space constraints, the booth allocation for the 6 th , 7 th , and 8 th grades followed a ratio of 1:2:3. The participants from each grade were as follows: $\frac{1}{3}$ of the 6 th grade, $\frac{2}{5}$ of the 7 th grade, and $\frac{3}{7}$ of the 8 th grade. If the fair had a total of 60 booths, how many students are enrolled in the school?	Let <i>x</i> , <i>y</i> , and <i>z</i> be the number of 6 th , 7 th and 8 th graders, respectively. $\frac{\frac{1}{3}}{\frac{1}{1}}x = \frac{\frac{2}{5}}{\frac{2}{2}}y = \frac{\frac{3}{7}}{\frac{7}{3}}z$ Simplifying: $\frac{x}{3} = \frac{y}{5} = \frac{z}{7}$ Since there are 60 booths, 6 th grade has 10, 7 th grade has 20, and 8 th grade has 30 booths. Therefore, 6 th grade: 30 7 th grade: 50 8 th grade: 70 Thus, the school has 150 (= 30 + 50 + 70) enrolled.

A Common Type of Problems in AMC